Topological Augmentation for Class-Imbalanced Node Classification

08/27/2023
by   Zhining Liu, et al.
0

Class imbalance is prevalent in real-world node classification tasks and often biases graph learning models toward majority classes. Most existing studies root from a node-centric perspective and aim to address the class imbalance in training data by node/class-wise reweighting or resampling. In this paper, we approach the source of the class-imbalance bias from an under-explored topology-centric perspective. Our investigation reveals that beyond the inherently skewed training class distribution, the graph topology also plays an important role in the formation of predictive bias: we identify two fundamental challenges, namely ambivalent and distant message-passing, that can exacerbate the bias by aggravating majority-class over-generalization and minority-class misclassification. In light of these findings, we devise a lightweight topological augmentation method ToBA to dynamically rectify the nodes influenced by ambivalent/distant message-passing during graph learning, so as to mitigate the class-imbalance bias. We highlight that ToBA is a model-agnostic, efficient, and versatile solution that can be seamlessly combined with and further boost other imbalance-handling techniques. Systematic experiments validate the superior performance of ToBA in both promoting imbalanced node classification and mitigating the prediction bias between different classes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset