Towards Fully 8-bit Integer Inference for the Transformer Model

09/17/2020
by   Ye Lin, et al.
0

8-bit integer inference, as a promising direction in reducing both the latency and storage of deep neural networks, has made great progress recently. On the other hand, previous systems still rely on 32-bit floating point for certain functions in complex models (e.g., Softmax in Transformer), and make heavy use of quantization and de-quantization. In this work, we show that after a principled modification on the Transformer architecture, dubbed Integer Transformer, an (almost) fully 8-bit integer inference algorithm Scale Propagation could be derived. De-quantization is adopted when necessary, which makes the network more efficient. Our experiments on WMT16 En<->Ro, WMT14 En<->De and En->Fr translation tasks as well as the WikiText-103 language modelling task show that the fully 8-bit Transformer system achieves comparable performance with the floating point baseline but requires nearly 4x less memory footprint.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset