Towards Neural Co-Processors: Combining Neural Decoding and Encoding in Brain-Computer Interfaces

11/28/2018
by   Rajesh P. N. Rao, et al.
0

The field of brain-computer interfaces is poised to advance from the traditional goal of controlling prosthetic devices using brain signals to combining neural decoding and encoding within a single neuroprosthetic device. Such a device acts as a "co-processor" for the brain, with applications ranging from inducing Hebbian plasticity for rehabilitation after brain injury to reanimating paralyzed limbs and enhancing memory. We review recent progress in simultaneous decoding and encoding for closed-loop control and plasticity induction. To address the challenge of multi-channel decoding and encoding, we introduce a unifying framework for developing brain co-processors based on artificial neural networks and deep learning. These "neural co-processors" can be used to jointly optimize cost functions with the nervous system to achieve desired behaviors ranging from targeted neuro-rehabilitation to augmentation of brain function.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset