Towards Optimal Compression: Joint Pruning and Quantization

02/15/2023
by   Ben Zandonati, et al.
0

Compression of deep neural networks has become a necessary stage for optimizing model inference on resource-constrained hardware. This paper presents FITCompress, a method for unifying layer-wise mixed precision quantization and pruning under a single heuristic, as an alternative to neural architecture search and Bayesian-based techniques. FITCompress combines the Fisher Information Metric, and path planning through compression space, to pick optimal configurations given size and operation constraints with single-shot fine-tuning. Experiments on ImageNet validate the method and show that our approach yields a better trade-off between accuracy and efficiency when compared to the baselines. Besides computer vision benchmarks, we experiment with the BERT model on a language understanding task, paving the way towards its optimal compression.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro