Towards Radio Designs with Non-Linear Processing for Next Generation Mobile Systems

MIMO mobile systems, with a large number of antennas at the base-station side, enable the concurrent transmission of multiple, spatially separated information streams and, therefore, enable improved network throughput and connectivity both in uplink and downlink transmissions. Traditionally, to efficiently facilitate such MIMO transmissions, linear base-station processing is adopted, that translates the MIMO channel into several single-antenna channels. Still, while such approaches are relatively easy to implement, they can leave on the table a significant amount of unexploited MIMO capacity. Recently proposed non-linear base-station processing methods claim this unexplored capacity and promise a substantially increased network throughput. Still, to the best of the authors' knowledge, non-linear base-station processing methods not only have not yet been adopted by actual systems, but have not even been evaluated in a standard-compliant framework, involving of all the necessary algorithmic modules required by a practical system. This work, outlines our experience by trying to incorporate and evaluate the gains of non-linear base-station processing in a 3GPP standard environment. We discuss the several corresponding challenges and our adopted solutions, together with their corresponding limitations. We report gains that we have managed to verify, and we also discuss remaining challenges, missing algorithmic components and future research directions that would be required towards highly efficient, future mobile systems that can efficiently exploit the gains of non-linear, base-station processing.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset