Towards Traversing the Continuous Spectrum of Image Retrieval
Image retrieval is one of the most popular tasks in computer vision. However, the proposed approaches in the literature can be roughly categorized into two groups: category- and instance-based retrieval. In this work, we show that the retrieval task is much richer and more complex, and can be viewed as a continuous spectrum spanning the space among these operational points. Hence, we propose to tackle a novel retrieval task where we want to smoothly traverse the simplex from category- to instance- and attribute-based retrieval. We propose a novel deep network architecture that learns to decompose an input query image into its basic components of categorical and attribute information. Moreover, using a continuous control parameter, our model learns to reconstruct a new embedding of the query by mixing these two signals, with different proportions, to target a specific point along the retrieval simplex. We demonstrate our idea in a detailed evaluation of the proposed model and highlight the advantages of our approach against a set of well-established retrieval model baselines.
READ FULL TEXT