Transductive Propagation Network for Few-shot Learning
Few-shot learning aims to build a learner that quickly generalizes to novel classes even when a limited number of labeled examples (so-called low-data problem) are available. Meta-learning is commonly deployed to mimic the test environment in a training phase for good generalization, where episodes (i.e., learning problems) are manually constructed from the training set. This framework gains a lot of attention to few-shot learning with impressive performance, though the low-data problem is not fully addressed. In this paper, we propose Transductive Propagation Network (TPN), a transductive method that classifies the entire test set at once to alleviate the low-data problem. Specifically, our proposed network explicitly learns an underlying manifold space that is appropriate to propagate labels from few-shot examples, where all parameters of feature embedding, manifold structure, and label propagation are estimated in an end-to-end way on episodes. We evaluate the proposed method on the commonly used miniImageNet and tieredImageNet benchmarks and achieve the state-of-the-art or promising results on these datasets.
READ FULL TEXT