Transfer Learning for Brain-Computer Interfaces: A Complete Pipeline

07/03/2020
by   Dongrui Wu, et al.
0

Transfer learning (TL) has been widely used in electroencephalogram (EEG) based brain-computer interfaces (BCIs) to reduce the calibration effort for a new subject, and demonstrated promising performance. After EEG signal acquisition, a closed-loop EEG-based BCI system also includes signal processing, feature engineering, and classification/regression blocks before sending out the control signal, whereas previous approaches only considered TL in one or two such components. This paper proposes that TL could be considered in all three components (signal processing, feature engineering, and classification/regression). Furthermore, it is also very important to specifically add a data alignment component before signal processing to make the data from different subjects more consistent, and hence to facilitate subsequential TL. Offline calibration experiments on two MI datasets verified our proposal. Especially, integrating data alignment and sophisticated TL approaches can significantly improve the classification performance, and hence greatly reduce the calibration effort.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset