Transfer Learning for Brain-Computer Interfaces: An Euclidean Space Data Alignment Approach

08/08/2018
by   He He, et al.
0

Almost all EEG-based brain-computer interfaces (BCIs) need some labeled subject-specific data to calibrate a new subject, as neural responses are different across subjects to even the same stimulus. So, a major challenge in developing high-performance and user-friendly BCIs is to cope with such individual differences so that the calibration can be reduced or even completely eliminated. This paper focuses on the latter. More specifically, we consider an offline application scenario, in which we have unlabeled EEG trials from a new subject, and would like to accurately label them by leveraging auxiliary labeled EEG trials from other subjects in the same task. To accommodate the individual differences, we propose a novel unsupervised approach to align the EEG trials from different subjects in the Euclidean space to make them more consistent. It has three desirable properties: 1) the aligned trial lie in the Euclidean space, which can be used by any Euclidean space signal processing and machine learning approach; 2) it can be computed very efficiently; and, 3) it does not need any labeled trials from the new subject. Experiments on motor imagery and event-related potentials demonstrated the effectiveness and efficiency of our approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset