Traversing Knowledge Graph in Vector Space without Symbolic Space Guidance

11/14/2016
by   Yelong Shen, et al.
0

Recent studies on knowledge base completion, the task of recovering missing facts based on observed facts, demonstrate the importance of learning embeddings from multi-step relations. Due to the size of knowledge bases, previous works manually design relation paths of observed triplets in symbolic space (e.g. random walk) to learn multi-step relations during training. However, these approaches suffer some limitations as most paths are not informative, and it is prohibitively expensive to consider all possible paths. To address the limitations, we propose learning to traverse in vector space directly without the need of symbolic space guidance. To remember the connections between related observed triplets and be able to adaptively change relation paths in vector space, we propose Implicit ReasoNets (IRNs), that is composed of a global memory and a controller module to learn multi-step relation paths in vector space and infer missing facts jointly without any human-designed procedure. Without using any axillary information, our proposed model achieves state-of-the-art results on popular knowledge base completion benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset