Twin-width II: small classes

06/17/2020
by   Édouard Bonnet, et al.
0

The twin-width of a graph G is the minimum integer d such that G has a d-contraction sequence, that is, a sequence of |V(G)|-1 iterated vertex identifications for which the overall maximum number of red edges incident to a single vertex is at most d, where a red edge appears between two sets of identified vertices if they are not homogeneous in G. We show that if a graph admits a d-contraction sequence, then it also has a linear-arity tree of f(d)-contractions, for some function f. First this permits to show that every bounded twin-width class is small, i.e., has at most n!c^n graphs labeled by [n], for some constant c. This unifies and extends the same result for bounded treewidth graphs [Beineke and Pippert, JCT '69], proper subclasses of permutations graphs [Marcus and Tardos, JCTA '04], and proper minor-free classes [Norine et al., JCTB '06]. The second consequence is an O(log n)-adjacency labeling scheme for bounded twin-width graphs, confirming several cases of the implicit graph conjecture. We then explore the "small conjecture" that, conversely, every small hereditary class has bounded twin-width. Inspired by sorting networks of logarithmic depth, we show that log_Θ(loglog d)n-subdivisions of K_n (a small class when d is constant) have twin-width at most d. We obtain a rather sharp converse with a surprisingly direct proof: the log_d+1n-subdivision of K_n has twin-width at least d. Secondly graphs with bounded stack or queue number (also small classes) have bounded twin-width. Thirdly we show that cubic expanders obtained by iterated random 2-lifts from K_4 [Bilu and Linial, Combinatorica '06] have bounded twin-width, too. We suggest a promising connection between the small conjecture and group theory. Finally we define a robust notion of sparse twin-width and discuss how it compares with other sparse classes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro