Uncertainty Modeling of Emerging Device-based Computing-in-Memory Neural Accelerators with Application to Neural Architecture Search

07/06/2021
by   Zheyu Yan, et al.
0

Emerging device-based Computing-in-memory (CiM) has been proved to be a promising candidate for high-energy efficiency deep neural network (DNN) computations. However, most emerging devices suffer uncertainty issues, resulting in a difference between actual data stored and the weight value it is designed to be. This leads to an accuracy drop from trained models to actually deployed platforms. In this work, we offer a thorough analysis of the effect of such uncertainties-induced changes in DNN models. To reduce the impact of device uncertainties, we propose UAE, an uncertainty-aware Neural Architecture Search scheme to identify a DNN model that is both accurate and robust against device uncertainties.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset