Unified Mask Embedding and Correspondence Learning for Self-Supervised Video Segmentation

03/17/2023
by   Liulei Li, et al.
0

The objective of this paper is self-supervised learning of video object segmentation. We develop a unified framework which simultaneously models cross-frame dense correspondence for locally discriminative feature learning and embeds object-level context for target-mask decoding. As a result, it is able to directly learn to perform mask-guided sequential segmentation from unlabeled videos, in contrast to previous efforts usually relying on an oblique solution - cheaply "copying" labels according to pixel-wise correlations. Concretely, our algorithm alternates between i) clustering video pixels for creating pseudo segmentation labels ex nihilo; and ii) utilizing the pseudo labels to learn mask encoding and decoding for VOS. Unsupervised correspondence learning is further incorporated into this self-taught, mask embedding scheme, so as to ensure the generic nature of the learnt representation and avoid cluster degeneracy. Our algorithm sets state-of-the-arts on two standard benchmarks (i.e., DAVIS17 and YouTube-VOS), narrowing the gap between self- and fully-supervised VOS, in terms of both performance and network architecture design.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro