Universal Adversarial Backdoor Attacks to Fool Vertical Federated Learning in Cloud-Edge Collaboration
Vertical federated learning (VFL) is a cloud-edge collaboration paradigm that enables edge nodes, comprising resource-constrained Internet of Things (IoT) devices, to cooperatively train artificial intelligence (AI) models while retaining their data locally. This paradigm facilitates improved privacy and security for edges and IoT devices, making VFL an essential component of Artificial Intelligence of Things (AIoT) systems. Nevertheless, the partitioned structure of VFL can be exploited by adversaries to inject a backdoor, enabling them to manipulate the VFL predictions. In this paper, we aim to investigate the vulnerability of VFL in the context of binary classification tasks. To this end, we define a threat model for backdoor attacks in VFL and introduce a universal adversarial backdoor (UAB) attack to poison the predictions of VFL. The UAB attack, consisting of universal trigger generation and clean-label backdoor injection, is incorporated during the VFL training at specific iterations. This is achieved by alternately optimizing the universal trigger and model parameters of VFL sub-problems. Our work distinguishes itself from existing studies on designing backdoor attacks for VFL, as those require the knowledge of auxiliary information not accessible within the split VFL architecture. In contrast, our approach does not necessitate any additional data to execute the attack. On the LendingClub and Zhongyuan datasets, our approach surpasses existing state-of-the-art methods, achieving up to 100% backdoor task performance while maintaining the main task performance. Our results in this paper make a major advance to revealing the hidden backdoor risks of VFL, hence paving the way for the future development of secure AIoT.
READ FULL TEXT