Unleashing the Power of Neural Discourse Parsers – A Context and Structure Aware Approach Using Large Scale Pretraining

11/06/2020
by   Grigorii Guz, et al.
0

RST-based discourse parsing is an important NLP task with numerous downstream applications, such as summarization, machine translation and opinion mining. In this paper, we demonstrate a simple, yet highly accurate discourse parser, incorporating recent contextual language models. Our parser establishes the new state-of-the-art (SOTA) performance for predicting structure and nuclearity on two key RST datasets, RST-DT and Instr-DT. We further demonstrate that pretraining our parser on the recently available large-scale "silver-standard" discourse treebank MEGA-DT provides even larger performance benefits, suggesting a novel and promising research direction in the field of discourse analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro