Unmasking Face Embeddings by Self-restrained Triplet Loss for Accurate Masked Face Recognition

03/02/2021
by   Fadi Boutros, et al.
0

Using the face as a biometric identity trait is motivated by the contactless nature of the capture process and the high accuracy of the recognition algorithms. After the current COVID-19 pandemic, wearing a face mask has been imposed in public places to keep the pandemic under control. However, face occlusion due to wearing a mask presents an emerging challenge for face recognition systems. In this paper, we presented a solution to improve the masked face recognition performance. Specifically, we propose the Embedding Unmasking Model (EUM) operated on top of existing face recognition models. We also propose a novel loss function, the Self-restrained Triplet (SRT), which enabled the EUM to produce embeddings similar to these of unmasked faces of the same identities. The achieved evaluation results on two face recognition models and two real masked datasets proved that our proposed approach significantly improves the performance in most experimental settings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset