Unsupervised Hierarchy Matching with Optimal Transport over Hyperbolic Spaces
This paper focuses on the problem of unsupervised alignment of hierarchical data such as ontologies or lexical databases. This is a problem that appears across areas, from natural language processing to bioinformatics, and is typically solved by appeal to outside knowledge bases and label-textual similarity. In contrast, we approach the problem from a purely geometric perspective: given only a vector-space representation of the items in the two hierarchies, we seek to infer correspondences across them. Our work derives from and interweaves hyperbolic-space representations for hierarchical data, on one hand, and unsupervised word-alignment methods, on the other. We first provide a set of negative results showing how and why Euclidean methods fail in this hyperbolic setting. We then propose a novel approach based on optimal transport over hyperbolic spaces, and show that it outperforms standard embedding alignment techniques in various experiments on cross-lingual WordNet alignment and ontology matching tasks.
READ FULL TEXT