Unsupervised Inference of Data-Driven Discourse Structures using a Tree Auto-Encoder

10/18/2022
by   Patrick Huber, et al.
0

With a growing need for robust and general discourse structures in many downstream tasks and real-world applications, the current lack of high-quality, high-quantity discourse trees poses a severe shortcoming. In order the alleviate this limitation, we propose a new strategy to generate tree structures in a task-agnostic, unsupervised fashion by extending a latent tree induction framework with an auto-encoding objective. The proposed approach can be applied to any tree-structured objective, such as syntactic parsing, discourse parsing and others. However, due to the especially difficult annotation process to generate discourse trees, we initially develop such method to complement task-specific models in generating much larger and more diverse discourse treebanks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro