Unsupervised Meta-Learning For Few-Shot Image and Video Classification

11/28/2018
by   Siavash Khodadadeh, et al.
32

Few-shot or one-shot learning of classifiers for images or videos is an important next frontier in computer vision. The extreme paucity of training data means that the learning must start with a significant inductive bias towards the type of task to be learned. One way to acquire this is by meta-learning on tasks similar to the target task. However, if the meta-learning phase requires labeled data for a large number of tasks closely related to the target task, it not only increases the difficulty and cost, but also conceptually limits the approach to variations of well-understood domains. In this paper, we propose UMTRA, an algorithm that performs meta-learning on an unlabeled dataset in an unsupervised fashion, without putting any constraint on the classifier network architecture. The only requirements towards the dataset are: sufficient size, diversity and number of classes, and relevance of the domain to the one in the target task. Exploiting this information, UMTRA generates synthetic training tasks for the meta-learning phase. We evaluate UMTRA on few-shot and one-shot learning on both image and video domains. To the best of our knowledge, we are the first to evaluate meta-learning approaches on UCF-101. On the Omniglot and Mini-Imagenet few-shot learning benchmarks, UMTRA outperforms every tested approach based on unsupervised learning of representations, while alternating for the best performance with the recent CACTUs algorithm. Compared to supervised model-agnostic meta-learning approaches, UMTRA trades off some classification accuracy for a vast decrease in the number of labeled data needed. For instance, on the five-way one-shot classification on the Omniglot, we retain 85 algorithm, while reducing the number of required labels from 24005 to 5.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset