Using altmetrics for detecting impactful research in quasi-zero-day time-windows: the case of COVID-19

04/13/2020
by   Erik Boetto, et al.
0

On December 31st 2019, the World Health Organization (WHO) China Country Office was informed of cases of pneumonia of unknown etiology detected in Wuhan City. The cause of the syndrome was a new type of coronavirus isolated on January 7th 2020 and named Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). SARS-CoV-2 is the cause of the coronavirus disease 2019 (COVID-19). Since January 2020 an ever increasing number of scientific works have appeared in literature. Identifying relevant research outcomes at very early stages is challenging. In this work we use COVID-19 as a use-case for investigating: (i) which tools and frameworks are mostly used for early scholarly communication; (ii) to what extent altmetrics can be used to identify potential impactful research in tight (i.e. quasi-zero-day) time-windows. A literature review with rigorous eligibility criteria is performed for gathering a sample composed of scientific papers about SARS-CoV-2/COVID-19 appeared in literature in the tight time-window ranging from January 15th 2020 to February 24th 2020. This sample is used for building a knowledge graph that represents the knowledge about papers and indicators formally. This knowledge graph feeds a data analysis process which is applied for experimenting with altmetrics as impact indicators. We find moderate correlation among traditional citation count, citations on social media, and mentions on news and blogs. This suggests there is a common intended meaning of the citational acts associated with aforementioned indicators. Additionally, we define a method that harmonises different indicators for providing a multi-dimensional impact indicator.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset