Using Autoencoders To Learn Interesting Features For Detecting Surveillance Aircraft

09/27/2018
by   Teresa Nicole Brooks, et al.
0

This paper explores using a Long short-term memory (LSTM) based sequence autoencoder to learn interesting features for detecting surveillance aircraft using ADS-B flight data. An aircraft periodically broadcasts ADS-B (Automatic Dependent Surveillance - Broadcast) data to ground receivers. The ability of LSTM networks to model varying length time series data and remember dependencies that span across events makes it an ideal candidate for implementing a sequence autoencoder for ADS-B data because of its possible variable length time series, irregular sampling and dependencies that span across events.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro