Using Machine Intelligence to Prioritise Code Review Requests
Modern Code Review (MCR) is the process of reviewing new code changes that need to be merged with an existing codebase. As a developer, one may receive many code review requests every day, i.e., the review requests need to be prioritised. Manually prioritising review requests is a challenging and time-consuming process. To address the above problem, we conducted an industrial case study at Ericsson aiming at developing a tool called Pineapple, which uses a Bayesian Network to prioritise code review requests. To validate our approach/tool, we deployed it in a live software development project at Ericsson, wherein more than 150 developers develop a telecommunication product. We focused on evaluating the predictive performance, feasibility, and usefulness of our approach. The results indicate that Pineapple has competent predictive performance (RMSE = 0.21 and MAE = 0.15). Furthermore, around 82.6 of Pineapple's users believe the tool can support code review request prioritisation by providing reliable results, and around 56.5 believe it helps reducing code review lead time. As future work, we plan to evaluate Pineapple's predictive performance, usefulness, and feasibility through a longitudinal investigation.
READ FULL TEXT