Using prior information to boost power in correlation structure support recovery
Hypothesis testing of structure in correlation and covariance matrices is of broad interest in many application areas. In high dimensions and/or small to moderate sample sizes, high error rates in testing is a substantial concern. This article focuses on increasing power through a frequentist assisted by Bayes (FAB) procedure. This FAB approach boosts power by including prior information on the correlation parameters. In particular, we suppose there is one of two sources of prior information: (i) a prior dataset that is distinct from the current data but related enough that it may contain valuable information about the correlation structure in the current data; and (ii) knowledge about a tendency for the correlations in different parameters to be similar so that it is appropriate to consider a hierarchical model. When the prior information is relevant, the proposed FAB approach can have significant gains in power. A divide-and-conquer algorithm is developed to reduce computational complexity in massive testing dimensions. We show improvements in power for detecting correlated gene pairs in genomic studies while maintaining control of Type I error or false discover rate (FDR).
READ FULL TEXT