Using Recursive Partitioning to Find and Estimate Heterogenous Treatment Effects In Randomized Clinical Trials

07/11/2018
by   Richard Berk, et al.
0

Heterogeneous treatment effects can be very important in the analysis of randomized clinical trials. Heightened risks or enhanced benefits may exist for particular subsets of study subjects. When the heterogeneous treatment effects are specified as the research is being designed, there are proper and readily available analysis techniques. When the heterogeneous treatment effects are inductively obtained as an experiment's data are analyzed, significant complications are introduced. There can be a need for special loss functions designed to find local average treatment effects and for techniques that properly address post selection statistical inference. In this paper, we tackle both while undertaking a recursive partitioning analysis of a randomized clinical trial testing whether individuals on probation, who are low risk, can be minimally supervised with no increase in recidivism.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset