Utilizing Complex-valued Network for Learning to Compare Image Patches

11/29/2018
by   Siwen Jiang, et al.
0

At present, the great achievements of convolutional neural network(CNN) in feature and metric learning have attracted many researchers. However, the vast majority of deep network architectures have been used to represent based on real values. The research of complex-valued networks is seldom concerned due to the absence of effective models and suitable distance of complex-valued vector. Motived by recent works, complex vectors have been shown to have a richer representational capacity and efficient complex blocks have been reported, we propose a new approach for learning image descriptors with complex numbers to compare image patches. We also propose a new architecture to learn image similarity function directly based on complex-valued network. We show that our models can significantly outperform the state-of-the art on benchmark datasets. We make the source code of our models publicly available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset