Value Summation: A Novel Scoring Function for MPC-based Model-based Reinforcement Learning

09/16/2022
by   Mehran Raisi, et al.
0

This paper proposes a novel scoring function for the planning module of MPC-based model-based reinforcement learning methods to address the inherent bias of using the reward function to score trajectories. The proposed method enhances the learning efficiency of existing MPC-based MBRL methods using the discounted sum of values. The method utilizes optimal trajectories to guide policy learning and updates its state-action value function based on real-world and augmented on-board data. The learning efficiency of the proposed method is evaluated in selected MuJoCo Gym environments as well as in learning locomotion skills for a simulated model of the Cassie robot. The results demonstrate that the proposed method outperforms the current state-of-the-art algorithms in terms of learning efficiency and average reward return.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro