Variable-Complexity Weighted-Tempered Gibbs Samplers for Bayesian Variable Selection
Subset weighted-Tempered Gibbs Sampler (wTGS) has been recently introduced by Jankowiak to reduce the computation complexity per MCMC iteration in high-dimensional applications where the exact calculation of the posterior inclusion probabilities (PIP) is not essential. However, the Rao-Backwellized estimator associated with this sampler has a high variance as the ratio between the signal dimension and the number of conditional PIP estimations is large. In this paper, we design a new subset weighted-Tempered Gibbs Sampler (wTGS) where the expected number of computations of conditional PIPs per MCMC iteration can be much smaller than the signal dimension. Different from the subset wTGS and wTGS, our sampler has a variable complexity per MCMC iteration. We provide an upper bound on the variance of an associated Rao-Blackwellized estimator for this sampler at a finite number of iterations, T, and show that the variance is O((P/S)^2 log T/T) for a given dataset where S is the expected number of conditional PIP computations per MCMC iteration. Experiments show that our Rao-Blackwellized estimator can have a smaller variance than its counterpart associated with the subset wTGS.
READ FULL TEXT