Variance in Classifying Affective State via Electrocardiogram and Photoplethysmography

07/06/2022
by   Zachary Dair, et al.
0

Advances in wearable technology have significantly increased the sensitivity and accuracy of devices for recording physiological signals. Commercial off-the-shelf wearable devices can gather large quantities of physiological data un-obtrusively. This enables momentary assessments of human physiology, which provide valuable insights into an individual's health and psychological state. Leveraging these insights provides significant benefits for human-to-computer interaction and personalised healthcare. This work contributes an analysis of variance occurring in features representative of affective states extracted from electrocardiograms and photoplethysmography; subsequently identifies the cardiac measures most descriptive of affective states from both signals and provides insights into signal and emotion-specific cardiac measures; finally baseline performance for automated affective state detection from physiological signals is established.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro