Visually-aware Recommendation with Aesthetic Features

05/02/2019
by   Wenhui Yu, et al.
0

Visual information plays a critical role in human decision-making process. While recent developments on visually-aware recommender systems have taken the product image into account, none of them has considered the aesthetic aspect. We argue that the aesthetic factor is very important in modeling and predicting users' preferences, especially for some fashion-related domains like clothing and jewelry. This work addresses the need of modeling aesthetic information in visually-aware recommender systems. Technically speaking, we make three key contributions in leveraging deep aesthetic features: (1) To describe the aesthetics of products, we introduce the aesthetic features extracted from product images by a deep aesthetic network. We incorporate these features into recommender system to model users' preferences in the aesthetic aspect. (2) Since in clothing recommendation, time is very important for users to make decision, we design a new tensor decomposition model for implicit feedback data. The aesthetic features are then injected to the basic tensor model to capture the temporal dynamics of aesthetic preferences (e.g., seasonal patterns). (3) We also use the aesthetic features to optimize the learning strategy on implicit feedback data. We enrich the pairwise training samples by considering the similarity among items in the visual space and graph space; the key idea is that a user may likely have similar perception on similar items. We perform extensive experiments on several real-world datasets and demonstrate the usefulness of aesthetic features and the effectiveness of our proposed methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset