VL-Fields: Towards Language-Grounded Neural Implicit Spatial Representations

05/21/2023
by   Nikolaos Tsagkas, et al.
0

We present Visual-Language Fields (VL-Fields), a neural implicit spatial representation that enables open-vocabulary semantic queries. Our model encodes and fuses the geometry of a scene with vision-language trained latent features by distilling information from a language-driven segmentation model. VL-Fields is trained without requiring any prior knowledge of the scene object classes, which makes it a promising representation for the field of robotics. Our model outperformed the similar CLIP-Fields model in the task of semantic segmentation by almost 10

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro