Voiceprint recognition of Parkinson patients based on deep learning

12/17/2018
by   Zhijing Xu, et al.
0

More than 90 disorders. Speech impairment is already indicator of PD. This study focuses on PD diagnosis through voiceprint features. In this paper, a method based on Deep Neural Network (DNN) recognition and classification combined with Mini-Batch Gradient Descent (MBGD) is proposed to distinguish PD patients from healthy people using voiceprint features. In order to exact the voiceprint features from patients, Weighted Mel Frequency Cepstrum Coefficients (WMFCC) is applied. The proposed method is tested on experimental data obtained by the voice recordings of three sustained vowels /a/, /o/ and /u/ from participants (48 PD and 20 healthy people). The results show that the proposed method achieves a high accuracy of diagnosis of PD patients from healthy people, than the conventional methods like Support Vector Machine (SVM) and other mentioned in this paper. The accuracy achieved is 89.5 problem that the high-order cepstrum coefficients are small and the features component's representation ability to the audio is weak. MBGD reduces the computational loads of the loss function, and increases the training speed of the system. DNN classifier enhances the classification ability of voiceprint features. Therefore, the above approaches can provide a solid solution for the quick auxiliary diagnosis of PD in early stage.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset