VPH+ and MPC Combined Collision Avoidance for Unmanned Ground Vehicle in Unknown Environment

05/21/2018
by   Kai Liu, et al.
0

There are many situations for which an unmanned ground vehicle has to work with only partial observability of the environment. Therefore, a feasible nonholonomic obstacle avoidance and target tracking action must be generated immediately based on the real-time perceptual information. This paper presents a robust approach to integrating VPH+ (enhanced vector polar histogram) and MPC (model predictive control). VPH+ is applied to calculate the desired direction for its environment perception ability and computational efficiency, while MPC is explored to perform a constrained model-predictive trajectory generation. This approach can be implemented in a reactive controller. Simulation experiments are performed in VREP to validate the proposed approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro