Weak-strong uniqueness for the Landau-Lifshitz-Gilbert equation in micromagnetics

10/10/2019
by   Giovanni Di Fratta, et al.
0

We consider the time-dependent Landau-Lifshitz-Gilbert equation. We prove that each weak solution coincides with the (unique) strong solution, as long as the latter exists in time. Unlike available results in the literature, our analysis also includes the physically relevant lower-order terms like Zeeman contribution, anisotropy, stray field, and the Dzyaloshinskii-Moriya interaction (which accounts for the emergence of magnetic Skyrmions). Moreover, our proof gives a template on how to approach weak-strong uniqueness for even more complicated problems, where LLG is (nonlinearly) coupled to other (nonlinear) PDE systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset