Weighted least squares estimators for the Parzen tail index

02/28/2020
by   Amenah AL-Najafi, et al.
0

Estimation of the tail index of heavy-tailed distributions and its applications are essential in many research areas. We propose a class of weighted least squares (WLS) estimators for the Parzen tail index. Our approach is based on the method developed by <cit.>. We investigate consistency and asymptotic normality of the WLS estimators. Through a simulation study, we make a comparison with the Hill, Pickands, DEdH (Dekkers, Einmahl and de Haan) and ordinary least squares (OLS) estimators using the mean square error as criterion. The results show that in a restricted model some members of the WLS estimators are competitive with the Pickands, DEdH and OLS estimators.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset