Why Attention? Analyzing and Remedying BiLSTM Deficiency in Modeling Cross-Context for NER

10/07/2019
by   Peng-Hsuan Li, et al.
0

State-of-the-art approaches of NER have used sequence-labeling BiLSTM as a core module. This paper formally shows the limitation of BiLSTM in modeling cross-context patterns. Two types of simple cross-structures – self-attention and Cross-BiLSTM – are shown to effectively remedy the problem. On both OntoNotes 5.0 and WNUT 2017, clear and consistent improvements are achieved over bare-bone models, up to 8.7 analyses across several aspects of the improvements, especially the identification of multi-token mentions, are further given.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro