Workflow-Driven Distributed Machine Learning in CHASE-CI: A Cognitive Hardware and Software Ecosystem Community Infrastructure

02/26/2019
by   Ilkay Altintas, et al.
0

The advances in data, computing and networking over the last two decades led to a shift in many application domains that includes machine learning on big data as a part of the scientific process, requiring new capabilities for integrated and distributed hardware and software infrastructure. This paper contributes a workflow-driven approach for dynamic data-driven application development on top of a new kind of networked Cyberinfrastructure called CHASE-CI. In particular, we present: 1) The architecture for CHASE-CI, a network of distributed fast GPU appliances for machine learning and storage managed through Kubernetes on the high-speed (10-100Gbps) Pacific Research Platform (PRP); 2) A machine learning software containerization approach and libraries required for turning such a network into a distributed computer for big data analysis; 3) An atmospheric science case study that can only be made scalable with an infrastructure like CHASE-CI; 4) Capabilities for virtual cluster management for data communication and analysis in a dynamically scalable fashion, and visualization across the network in specialized visualization facilities in near real-time; and, 5) A step-by-step workflow and performance measurement approach that enables taking advantage of the dynamic architecture of the CHASE-CI network and container management infrastructure.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset