Writer Recognition Using Off-line Handwritten Single Block Characters

01/25/2022
by   Adrian Leo Hagström, et al.
0

Block characters are often used when filling paper forms for a variety of purposes. We investigate if there is biometric information contained within individual digits of handwritten text. In particular, we use personal identity numbers consisting of the six digits of the date of birth, DoB. We evaluate two recognition approaches, one based on handcrafted features that compute contour directional measurements, and another based on deep features from a ResNet50 model. We use a self-captured database of 317 individuals and 4920 written DoBs in total. Results show the presence of identity-related information in a piece of handwritten information as small as six digits with the DoB. We also analyze the impact of the amount of enrolment samples, varying its number between one and ten. Results with such small amount of data are promising. With ten enrolment samples, the Top-1 accuracy with deep features is around 94 reaches nearly 100 EER>20 still room for improvement.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset