WSRNet: Joint Spotting and Recognition of Handwritten Words

08/17/2020
by   George Retsinas, et al.
0

In this work, we present a unified model that can handle both Keyword Spotting and Word Recognition with the same network architecture. The proposed network is comprised of a non-recurrent CTC branch and a Seq2Seq branch that is further augmented with an Autoencoding module. The related joint loss leads to a boost in recognition performance, while the Seq2Seq branch is used to create efficient word representations. We show how to further process these representations with binarization and a retraining scheme to provide compact and highly efficient descriptors, suitable for keyword spotting. Numerical results validate the usefulness of the proposed architecture, as our method outperforms the previous state-of-the-art in keyword spotting, and provides results in the ballpark of the leading methods for word recognition.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset