XPert: Peripheral Circuit Neural Architecture Co-search for Area and Energy-efficient Xbar-based Computing

03/30/2023
by   Abhishek Moitra, et al.
0

The hardware-efficiency and accuracy of Deep Neural Networks (DNNs) implemented on In-memory Computing (IMC) architectures primarily depend on the DNN architecture and the peripheral circuit parameters. It is therefore essential to holistically co-search the network and peripheral parameters to achieve optimal performance. To this end, we propose XPert, which co-searches network architecture in tandem with peripheral parameters such as the type and precision of analog-to-digital converters, crossbar column sharing and the layer-specific input precision using an optimization-based design space exploration. Compared to VGG16 baselines, XPert achieves 10.24x (4.7x) lower EDAP, 1.72x (1.62x) higher TOPS/W,1.93x (3x) higher TOPS/mm2 at 92.46 accuracy for CIFAR10 (TinyImagenet) datasets. The code for this paper is available at https://github.com/Intelligent-Computing-Lab-Yale/XPert.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset