Zero-shot Sequence Labeling: Transferring Knowledge from Sentences to Tokens

05/06/2018
by   Marek Rei, et al.
0

Can attention- or gradient-based visualization techniques be used to infer token-level labels for binary sequence tagging problems, using networks trained only on sentence-level labels? We construct a neural network architecture based on soft attention, train it as a binary sentence classifier and evaluate against token-level annotation on four different datasets. Inferring token labels from a network provides a method for quantitatively evaluating what the model is learning, along with generating useful feedback in assistance systems. Our results indicate that attention-based methods are able to predict token-level labels more accurately, compared to gradient-based methods, sometimes even rivaling the supervised oracle network.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro