Bethe Bounds and Approximating the Global Optimum

12/31/2012
by   Adrian Weller, et al.
0

Inference in general Markov random fields (MRFs) is NP-hard, though identifying the maximum a posteriori (MAP) configuration of pairwise MRFs with submodular cost functions is efficiently solvable using graph cuts. Marginal inference, however, even for this restricted class, is in #P. We prove new formulations of derivatives of the Bethe free energy, provide bounds on the derivatives and bracket the locations of stationary points, introducing a new technique called Bethe bound propagation. Several results apply to pairwise models whether associative or not. Applying these to discretized pseudo-marginals in the associative case we present a polynomial time approximation scheme for global optimization provided the maximum degree is O( n), and discuss several extensions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset