Bethe Bounds and Approximating the Global Optimum
Inference in general Markov random fields (MRFs) is NP-hard, though identifying the maximum a posteriori (MAP) configuration of pairwise MRFs with submodular cost functions is efficiently solvable using graph cuts. Marginal inference, however, even for this restricted class, is in #P. We prove new formulations of derivatives of the Bethe free energy, provide bounds on the derivatives and bracket the locations of stationary points, introducing a new technique called Bethe bound propagation. Several results apply to pairwise models whether associative or not. Applying these to discretized pseudo-marginals in the associative case we present a polynomial time approximation scheme for global optimization provided the maximum degree is O( n), and discuss several extensions.
READ FULL TEXT