Defense Against Smart Invaders with Swarms of Sweeping Agents
The goal of this research is to devise guaranteed defense policies that allow to protect a given region from the entrance of smart mobile invaders by detecting them using a team of defending agents equipped with identical line sensors. By designing cooperative defense strategies that ensure all invaders are detected, conditions on the defenders' speed are derived. Successful accomplishment of the defense task implies invaders with a known limit on their speed cannot slip past the defenders and enter the guarded region undetected. The desired outcome of the defense protocols is to defend the area and additionally to expand it as much as possible. Expansion becomes possible if the defenders' speed exceeds a critical speed that is necessary to only defend the initial region. We present results on the total search time, critical speeds and maximal expansion possible for two types of novel pincer-movement defense processes, circular and spiral, for any even number of defenders. The proposed spiral process allows to detect invaders at nearly the lowest theoretically optimal speed, and if this speed is exceeded, it also allows to expand the protected region almost to the maximal area.
READ FULL TEXT