DensePeds: Pedestrian Tracking in Dense Crowds Using Front-RVO and Sparse Features

06/25/2019
by   Rohan Chandra, et al.
0

We present a pedestrian tracking algorithm, DensePeds, that tracks individuals in highly dense crowds (greater than 2 pedestrians per square meter). Our approach is designed for videos captured from front-facing or elevated cameras. We present a new motion model called Front-RVO (FRVO) for predicting pedestrian movements in dense situations using collision avoidance constraints and combine it with state-of-the-art Mask R-CNN to compute sparse feature vectors that reduce the loss of pedestrian tracks (false negatives). We evaluate DensePeds on the standard MOT benchmarks as well as a new dense crowd dataset. In practice, our approach is 4.5 times faster than prior tracking algorithms on the MOT benchmark and we are state-of-the-art in dense crowd videos by over 2.6

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro