Genetic Algorithms For Extractive Summarization
Most current work in NLP utilizes deep learning, which requires a lot of training data and computational power. This paper investigates the strengths of Genetic Algorithms (GAs) for extractive summarization, as we hypothesized that GAs could construct more efficient solutions for the summarization task due to their relative customizability relative to deep learning models. This is done by building a vocabulary set, the words of which are represented as an array of weights, and optimizing those set of weights with the GA. These weights can be used to build an overall weighting of a sentence, which can then be passed to some threshold for extraction. Our results showed that the GA was able to learn a weight representation that could filter out excessive vocabulary and thus dictate sentence importance based on common English words.
READ FULL TEXT