Learning Robust Bed Making using Deep Imitation Learning with DART

11/07/2017
by   Michael Laskey, et al.
0

Bed-making is a universal home task that can be challenging for senior citizens due to reaching motions. Automating bed-making has multiple technical challenges such as perception in an unstructured environments, deformable object manipulation, obstacle avoidance and sequential decision making. We explore how DART, an LfD algorithm for learning robust policies, can be applied to automating bed making without fiducial markers with a Toyota Human Support Robot (HSR). By gathering human demonstrations for grasping the sheet and failure detection, we can learn deep neural network policies that leverage pre-trained YOLO features to automate the task. Experiments with a 1/2 scale twin bed and distractors placed on the bed, suggest policies learned on 50 demonstrations with DART achieve 96 than a corner detector baseline using contour detection.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset