Location-based Activity Behavior Deviation Detection for Nursing Home using IoT Devices

01/25/2023
by   Billy Pik Lik Lau, et al.
0

With the advancement of the Internet of Things(IoT) and pervasive computing applications, it provides a better opportunity to understand the behavior of the aging population. However, in a nursing home scenario, common sensors and techniques used to track an elderly living alone are not suitable. In this paper, we design a location-based tracking system for a four-story nursing home - The Salvation Army, Peacehaven Nursing Home in Singapore. The main challenge here is to identify the group activity among the nursing home's residents and to detect if they have any deviated activity behavior. We propose a location-based deviated activity behavior detection system to detect deviated activity behavior by leveraging data fusion technique. In order to compute the features for data fusion, an adaptive method is applied for extracting the group and individual activity time and generate daily hybrid norm for each of the residents. Next, deviated activity behavior detection is executed by considering the difference between daily norm patterns and daily input data for each resident. Lastly, the deviated activity behavior among the residents are classified using a rule-based classification approach. Through the implementation, there are 44.4 behavior , while 37 18.6

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset