The Fast Loaded Dice Roller: A Near-Optimal Exact Sampler for Discrete Probability Distributions

03/08/2020
by   Feras A. Saad, et al.
0

This paper introduces a new algorithm for the fundamental problem of generating a random integer from a discrete probability distribution using a source of independent and unbiased random coin flips. We prove that this algorithm, which we call the Fast Loaded Dice Roller (FLDR), is highly efficient in both space and time: (i) the size of the sampler is guaranteed to be linear in the number of bits needed to encode the input distribution; and (ii) the expected number of bits of entropy it consumes per sample is at most 6 bits more than the information-theoretically optimal rate. We present fast implementations of the linear-time preprocessing and near-optimal sampling algorithms using unsigned integer arithmetic. Empirical evaluations on a broad set of probability distributions establish that FLDR is 2x-10x faster in both preprocessing and sampling than multiple baseline algorithms, including the widely-used alias and interval samplers. It also uses up to 10000x less space than the information-theoretically optimal sampler, at the expense of less than 1.5x runtime overhead.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro