Towards a Generic Diver-Following Algorithm: Balancing Robustness and Efficiency in Deep Visual Detection

09/18/2018
by   Md Jahidul Islam, et al.
0

This paper explores the design and development of a class of robust diver-following algorithms for autonomous underwater robots. By considering the operational challenges for underwater visual tracking in diverse real-world settings, we formulate a set of desired features of a generic diver following algorithm. We attempt to accommodate these features and maximize general tracking performance by exploiting the state-of-the-art deep object detection models. We fine-tune the building blocks of these models with a goal of balancing the trade-off between robustness and efficiency in an onboard setting under real-time constraints. Subsequently, we design an architecturally simple Convolutional Neural Network (CNN)-based diver-detection model that is much faster than the state-of-the-art deep models yet provides comparable detection performances. In addition, we validate the performance and effectiveness of the proposed diver-following modules through a number of field experiments in closed-water and open-water environments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset